Identification of a BAHD Acyltransferase Gene Involved in Plant Growth and Secondary Metabolism in Tea Plants

Author:

Aktar Shirin,Bai Peixian,Wang Liubin,Xun Hanshuo,Zhang Rui,Wu Liyun,He Mengdi,Cheng Hao,Wang Liyuan,Wei KangORCID

Abstract

Plant acyl-CoA dominated acyltransferases (named BAHD) comprise a large appointed protein superfamily and play varied roles in plant secondary metabolism like synthesis of modified anthocyanins, flavonoids, volatile esters, etc. Tea (Camellia sinensis) is an important non-alcoholic medicinal and fragrancy plant synthesizing different secondary metabolites, including flavonoids. In the tea (C.A sinensis) cultivar Longjing 43 (LJ43), eight samples were performed into three groups for transcriptome analysis under three biological replications. Among the BAHD acyltransferase genes in tea cultivars, the expression of TEA031065 was highest in buds and young leaves following the RNA sequencing data, which was coincident with the tissue rich in catechins and other flavonoids. We then transformed this gene into wild-type Arabidopsis as an over-expression (OX) line 1 and line 2 in ½ MS media to verify its function. In the wild types (WT), the primary root length, number of secondary roots, and total root weight were significantly higher at 24%, 15%, and 53.92%, respectively, compared to the transgenic lines (OX1 and OX2). By contrast, the leaves displayed larger rosettes (21.58%), with higher total leaf weight (32.64%) in the transgenic lines than in the wild type (WT). This result is consistent with DCR mutant At5g23940 gene in Arabidopsis thaliana. Here, anthocyanin content in transgenic lines was also increased (21.65%) as compared to WT. According to the RNA sequencing data, a total of 22 growth regulatory genes and 31 structural genes with TFs (transcription factors) that are correlative with plant growth and anthocyanin accumulation were identified to be differentially expressed in the transgenic lines. It was found that some key genes involved in IAA (Auxin) and GA (Gibberellin) biosynthesis were downregulated in the transgenic lines, which might be correlated with the phenotype changes in roots. Moreover, the upregulation of plant growth regulation genes, such as UGT73C4 (zeatin), ARR15, GH3.5, ETR2, ERS2, APH4, and SAG113 might be responsible for massive leaf growth. In addition, transgenic lines shown high anthocyanin accumulation due to the upregulation of the (1) 3AT1 and (3) GSTF, particularly, GSTF12 genes in the flavonoid biosynthesis pathway. However, the TFs such as, CCoAMT, bHLH, WRKY, CYP, and other MYBs were also significantly upregulated in transgenic lines, which increased the content of anthocyanins in A. thaliana seedlings. In conclusion, a BAHD acyltransferase (TEA031065) was identified, which might play a vital role in tea growth and secondary metabolites regulation. This study increases our knowledge concerning the combined functionality of the tea BAHD acyltransferase gene (TEA031065).

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference65 articles.

1. CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis);Yu;Hortic. Res.,2021

2. Effects of tetracycline on the secondary metabolites and nutritional value of oilseed rape (Brassica napus L.);Zhao;Environ. Sci. Pollut. Res.,2022

3. Trichoderma Secondary Metabolites that Affect Plant Metabolism;Vinale;Nat. Prod. Commun.,2012

4. Convergent evolution in the BAHD family of acyl transferases: Identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana;Luo;Plant J.,2007

5. BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds;Bontpart;New Phytol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3