Chemical Survey of Three Species of the Genus Rauhia Traub (Amaryllidaceae)

Author:

Tallini Luciana R.ORCID,Osorio Edison H.ORCID,Berkov Strahil,Torras-Claveria Laura,Rodríguez-Escobar María L.,Viladomat Francesc,Meerow Alan W.,Bastida Jaume

Abstract

Plant biodiversity is an important source of compounds with medicinal properties. The alkaloid galanthamine, first isolated from Galanthus woronowii (Amaryllidaceae), is approved by the FDA for the palliative treatment of mild to moderate Alzheimer’s disease due to its acetylcholinesterase (AChE) inhibitory activity. Obtaining this active pharmaceutical ingredient, still sourced on an industrial scale from the Amaryllidaceae species, is a challenge for pharmaceutical companies due to its low natural yield and the high cost of its synthesis. The aim of this work was to determine the alkaloid profile of three different Rauhia (Amaryllidaceae) species collected in Peru, and to assess the potential application of their extracts for the treatment of Alzheimer’s disease. The alkaloids were identified by gas chromatography coupled to mass spectrometry (GC-MS), and the AChE inhibitory activity of the extracts was analyzed. Thirty compounds were quantified from the Rauhia species, the R. multiflora extract being the most interesting due to its high diversity of galanthamine-type structures. The R. multiflora extract was also the most active against AChE, with the half maximal inhibitory concentration (IC50) values of 0.17 ± 0.02 μg·mL−1 in comparison with the IC50 values of 0.53 ± 0.12 μg·mL−1 for galanthamine, used as a reference. Computational experiments were carried out on the activity of the galanthamine-type alkaloids identified in R. multiflora toward five different human AChE structures. The simulation of the molecules 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lycoraminone on the 4EY6 crystal structure theoretically showed a higher inhibition of hAChE and different interactions with the active site compared to galanthamine. In conclusion, the results of this first alkaloid profiling of the Rauhia species indicate that R. multiflora is an important natural source of galanthamine-type structures and could be used as a model for the development of biotechnological tools necessary to advance the sustainable production of galanthamine.

Funder

the Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference53 articles.

1. (2022, July 25). World Health Organization–Biodiversity and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/biodiversity-and-health.

2. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019;Newman;J. Nat. Prod.,2020

3. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry;Feher;J. Chem. Inf. Comput. Sci.,2003

4. Alkaloids isolated from natural herbs as the anticancer agents;Lu;Evid. Based. Compl. Alt.,2012

5. Chemical and biological aspects of Narcissus alkaloids;Cordell;The Alkaloids: Chemistry and Physiology,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3