CRISPR/Cas9 Mediated Knockout of the OsbHLH024 Transcription Factor Improves Salt Stress Resistance in Rice (Oryza sativa L.)

Author:

Alam Mohammad Shah,Kong Jiarui,Tao Ruofu,Ahmed TemoorORCID,Alamin Md.ORCID,Alotaibi Saqer S.ORCID,Abdelsalam Nader R.ORCID,Xu Jian-HongORCID

Abstract

Salinity stress is one of the most prominent abiotic stresses that negatively affect crop production. Transcription factors (TFs) are involved in the absorption, transport, or compartmentation of sodium (Na+) or potassium (K+) to resist salt stress. The basic helix–loop–helix (bHLH) is a TF gene family critical for plant growth and stress responses, including salinity. Herein, we used the CRISPR/Cas9 strategy to generate the gene editing mutant to investigate the role of OsbHLH024 in rice under salt stress. The A nucleotide base deletion was identified in the osbhlh024 mutant (A91). Exposure of the A91 under salt stress resulted in a significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence. Moreover, high antioxidant activities coincided with less reactive oxygen species (ROS) and stabilized levels of MDA in the A91. This better control of oxidative stress was accompanied by fewer Na+ but more K+, and a balanced level of Ca2+, Zn2+, and Mg2+ in the shoot and root of the A91, allowing it to withstand salt stress. Furthermore, the A91 also presented a significantly up-regulated expression of the ion transporter genes (OsHKT1;3, OsHAK7, and OsSOS1) in the shoot when exposed to salt stress. These findings imply that the OsbHLH024 might play the role of a negative regulator of salt stress, which will help to understand better the molecular basis of rice production improvement under salt stress.

Funder

Taif University Researchers Supporting Project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3