Anti-Biofilm and Associated Anti-Virulence Activities of Selected Phytochemical Compounds against Klebsiella pneumoniae

Author:

Adeosun Idowu J.ORCID,Baloyi Itumeleng T.ORCID,Cosa SekelwaORCID

Abstract

The ability of Klebsiella pneumoniae to form biofilm renders the pathogen recalcitrant to various antibiotics. The difficulty in managing K. pneumoniae related chronic infections is due to its biofilm-forming ability and associated virulence factors, necessitating the development of efficient strategies to control virulence factors. This study aimed at evaluating the inhibitory potential of selected phytochemical compounds on biofilm-associated virulence factors in K. pneumoniae, as well as authenticating their antibiofilm activity. Five phytochemical compounds (alpha-terpinene, camphene, fisetin, glycitein and phytol) were evaluated for their antibacterial and anti-biofilm-associated virulence factors such as exopolysaccharides, curli fibers, and hypermucoviscosity against carbapenem-resistant and extended-spectrum beta-lactamase-positive K. pneumoniae strains. The antibiofilm potential of these compounds was evaluated at initial cell attachment, microcolony formation and mature biofilm formation, then validated by in situ visualization using scanning electron microscopy (SEM). Exopolysaccharide surface topography was characterized using atomic force microscopy (AFM). The antibacterial activity of the compounds confirmed fisetin as the best anti-carbapenem-resistant K. pneumoniae, demonstrating a minimum inhibitory concentration (MIC) value of 0.0625 mg/mL. Phytol, glycitein and α-terpinene showed MIC values of 0.125 mg/mL for both strains. The assessment of the compounds for anti-virulence activity (exopolysaccharide reduction) revealed an up to 65.91% reduction in phytol and camphene. Atomic force microscopy detected marked differences between the topographies of untreated and treated (camphene and phytol) exopolysaccharides. Curli expression was inhibited at both 0.5 and 1.0 mg/mL by phytol, glycitein, fisetin and quercetin. The hypermucoviscosity was reduced by phytol, glycitein, and fisetin to the shortest mucoid string (1 mm) at 1 mg/mL. Phytol showed the highest antiadhesion activity against carbapenem-resistant and extended-spectrum beta-lactamase-positive K. pneumoniae (54.71% and 50.05%), respectively. Scanning electron microscopy correlated the in vitro findings, with phytol significantly altering the biofilm architecture. Phytol has antibiofilm and antivirulence potential against the highly virulent K. pneumoniae strains, revealing it as a potential lead compound for the management of K. pneumoniae-associated infections.

Funder

South African Medical Research Council

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3