Affiliation:
1. Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland
2. Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland
Abstract
Manufacturing processes in industry applications are often controlled by the evaluation of surface topography. Topography, in its overall performance, includes form, waviness, and roughness. Methods of measurement of surface roughness can be roughly divided into tactile and contactless techniques. The latter ones are much faster but sensitive to external disturbances from the environment. One type of external source error, while the measurement of surface topography occurs, is a high-frequency noise. This noise originates from the vibration of the measuring system. In this study, the methods for reducing high-frequency errors from the results of contactless roughness measurements of turned surfaces were supported by machine learning methods. This research delves into optimizing filtration methods for surface topography measurements through the application of machine learning models, focusing on enhancing the accuracy of surface roughness assessments. By examining turned surfaces under specific machining conditions and employing a variety of digital filters, the study identifies the Gaussian regression filter and spline filter as the most effective methods at a 22.5 µm cut-off. Utilizing neural networks, support vector machines, and decision trees, the research demonstrates the superior performance of SVMs, achieving remarkable accuracy and sensitivity in predicting optimal filtration methods.
Funder
VIA CARPATIA Universities of Technology Network named after the President of the Republic of Poland Lech Kaczyński
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献