Mineralocorticoid Receptor Mediates Cortisol Regulation of Ionocyte Development in Tilapia (Oreochromis mossambicus)

Author:

Wu Chien-Yu1,Lee Tsung-Han12ORCID,Tseng Deng-Yu3

Affiliation:

1. Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan

2. The Integrative Evolutionary Galliform Genomics (iEGG) and Animal Biotechnology Center, National Chung Hsing University, Taichung 402202, Taiwan

3. Department of Biological Sciences and Technology, National University of Tainan, Tainan 700301, Taiwan

Abstract

Cortisol is the predominant corticosteroid in ray-finned fish since it does not possess the aldosterone synthase necessary to produce specific mineralocorticoids. Cortisol is traditionally believed to function as a fish mineralocorticoid. However, the effects of cortisol are mediated through corticosteroid receptors in other vertebrates, and there is an ongoing debate about whether cortisol acts through the glucocorticoid receptor (GR) or the mineralocorticoid receptor (MR) in teleosts. To investigate this issue, we conducted a study using euryhaline Mozambique tilapia (Oreochromis mossambicus) as the experimental species. The experiment was designed to investigate the effect of cortisol on ionocyte development at both the cellular and gene expression levels in tilapia. We administered exogenous cortisol and receptor antagonists, used immunohistochemistry to quantify ionocyte numbers, and performed real-time PCR to assess the expression of the differentiation factor tumor protein 63 (P63) mRNA, an epidermal stem cell marker. We observed that cortisol increased the number of Na+-K+-ATPase (NKA)-immunoactive ionocytes (increased by 1.6-fold) and promoted the gene expression of P63 mRNA (increased by 1.4-fold). Furthermore, we found that the addition of the mineralocorticoid receptor antagonist Spironolactone inhibited the increase in the number of ionocytes (decreased to the level of the control group) and suppressed the gene expression of P63 (similarly decreased to the level of the control group). We also provided evidence for gr, mr, and p63 localization in epidermal cells. At the transcript level, mr mRNA is ubiquitously expressed in gill sections and present in epidermal stem cells (cells labeled with p63), supporting the antagonism and functional assay results in larvae. Our results confirmed that cortisol stimulates ionocyte differentiation in tilapia through the MR, rather than the GR. Therefore, we provide a new direction for investigating the dual action of osmotic regulation and skin/gill epithelial development in tilapia, which could help resolve previously inconsistent and conflicting findings.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3