Research on Sol-Gel Synthesis of Low-Temperature Na2O-B2O3-SiO2 Vitrified Bonds and Preparation of High-Strength Stacked Abrasives Using the Molding and Crushing Method

Author:

Wang Pei1,Liang Lingrui1,Li Zhihong1,Zhu Yumei1

Affiliation:

1. Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

Abstract

Currently, the sol-gel technique is employed in the synthesis of high-performance vitrified bonds; however, its application in the fabrication of stacked abrasives has been minimally explored. Furthermore, the methods utilized in the production of abrasive particles for stacked abrasives are technically challenging and incur high costs, which hinders their actual industrial application. Consequently, this study utilizes the sol-gel approach to synthesize a Na2O-B2O3-SiO2 ternary system vitrified bond powder and employs a molding and crushing method, which offers a lower technological barrier and reduced preparation costs, for the production of abrasive particles subsequently fabricating corundum stacked abrasives. Upon setting the binder composition to a molar ratio of n(SiO2):n(B2O3):n(Na2O) = 65:23:12, it was observed that the crystallization within the glass matrix was minimized and the optimal sintering temperature for the synthesized laminate abrasive to be sustained at 820 °C. At the aforementioned temperature, the binder melt is capable of flowing uniformly amongst the abrasive granules, thereby ensuring a robust encapsulation of the particles. The average single particle compressive strength of the prepared corundum stacked abrasive with a grain size of forty mesh can reach the highest of all composition points at 28.56 N and the average single particle compressive strength of the prepared diamond stacked abrasive is 28.14 N.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3