Influence of Cooling Methods on the Residual Mechanical Behavior of Fire-Exposed Concrete: An Experimental Study

Author:

Carvalho Espedito Felipe Teixeira de,Silva Neto João Trajano da,Soares Junior Paulo Roberto Ribeiro,Maciel Priscila de Souza,Fransozo Helder Luis,Bezerra Augusto Cesar da SilvaORCID,Gouveia Antônio Maria Claret de

Abstract

This work reports the main conclusions of a study on the mechanical behavior of concrete under ISO 834 fire with different cooling methods. The aim of this research was to provide reliable data for the analysis of structures damaged by fire. The experimental program used cylindrical concrete test specimens subjected to ISO 834 heating in a furnace up to maximum gas temperatures of 400, 500, 600, 700, and 800 °C. The compressive strength was measured in three situations: (a) at the different temperature levels reached in the furnace; (b) after a natural cooling process; and (c) after aspersion with water at ambient temperature. The results indicate that the concrete residual compressive strength is fairly dependent on the maximum temperature reached in the furnace and revealed that concrete of a lower strength preserved relatively higher levels of strength. The cooling method significantly influenced the strength, albeit at a lower intensity. In all cases, the residual strength remained in the range of 38% to 67% of the strength at ambient temperature. The statistical analysis showed that the data obtained by the experimental program are significant and confirmed the influence of the conditions imposed on the residual strength.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3