Interspecific Growth Reductions Caused by Wild Ungulates on Tree Seedlings and Their Implications for Temperate Quercus-Fagus Forests

Author:

Candaele Romain1ORCID,Ligot Gauthier1ORCID,Licoppe Alain2ORCID,Lievens Julien2,Fichefet Violaine2,Jonard Mathieu3,André Frédéric3ORCID,Lejeune Philippe1ORCID

Affiliation:

1. Gembloux Agro-Bio Tech (ULiège), TERRA—Forest Is Life, 5030 Gembloux, Belgium

2. Department of Natural and Agricultural Environment Studies, Public Service of Wallonia, 5030 Gembloux, Belgium

3. UCLouvain—Earth and Life Institute, 1348 Ottignies-Louvain-la-Neuve, Belgium

Abstract

Ungulate impacts on forest understory alter tree species composition, with cascading effects on forest functions and resilience against future climate conditions. Indeed, the ungulate browsing pressure on tree seedlings is species-specific and causes contrasted growth reductions that alter tree recruitment rates. Untangling the effects of browsing from the effects of the other factors driving regeneration success is required to guide the forest and ungulate management. In particular, Fagus sylvatica L. strongly dominates temperate Quercus-Fagus forests close to their climax, and it remains unclear if controlling ungulate populations can maintain tree species diversity in naturally regenerated forests. We addressed this question by monitoring 734 pairs of fenced and unfenced 6-m2 plots across a broad gradient of Cervus elaphus L. abundance in Belgian Quercus-Fagus forests managed by continuous cover forestry. Seedling height, density, and vegetation cover were monitored from 2016 to 2021. Species diversity and ecological affinity for light, temperature, and atmospheric humidity conditions were computed from these measures. With ungulates, the mean growth of Betula pendula Roth. and Sorbus aucuparia L. was negligible, whereas, without ungulates, their growth was higher than the growth of other species. With ungulates, the growth of Fagus sylvatica L. and Picea abies (L.) H. Karst was higher than other species. Quercus (Quercus petreae (Matt.) Liebl and Quercus robur L.) growth was the lowest in all conditions. Finally, Carpinus betulus L. was heavily browsed but still grew higher than its competitors with ungulates. Ungulate browsing can then severely affect seedling growth and likely reduce the diversity of future recruited trees. In the study area, browsing unfavored the regeneration of the species that are less shade tolerant, more-drought tolerant, and more-heat tolerant. It thus accelerates the natural succession and reduces forest resilience to heat and drought events. Such an observation was found valid over a wide study area encompassing contrasting levels of Cervus elaphus L. abundance. Combining further reductions of ungulate populations with foodscape improvement is likely required to maintain species diversity in these forests.

Funder

SPW

belspo

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3