Mitochondrial Reactive Oxygen Species, Insulin Resistance, and Nrf2-Mediated Oxidative Stress Response—Toward an Actionable Strategy for Anti-Aging

Author:

Kasai Shuya1ORCID,Kokubu Daichi23,Mizukami Hiroki4ORCID,Itoh Ken12ORCID

Affiliation:

1. Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan

2. Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan

3. Diet & Well-being Research Institute, KAGOME CO., LTD., 17 Nishitomiyama, Nasushiobara 329-2762, Japan

4. Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan

Abstract

Reactive oxygen species (ROS) are produced mainly by mitochondrial respiration and function as signaling molecules in the physiological range. However, ROS production is also associated with the pathogenesis of various diseases, including insulin resistance (IR) and type 2 diabetes (T2D). This review focuses on the etiology of IR and early events, especially mitochondrial ROS (mtROS) production in insulin-sensitive tissues. Importantly, IR and/or defective adipogenesis in the white adipose tissues (WAT) is thought to increase free fatty acid and ectopic lipid deposition to develop into systemic IR. Fatty acid and ceramide accumulation mediate coenzyme Q reduction and mtROS production in IR in the skeletal muscle, while coenzyme Q synthesis downregulation is also involved in mtROS production in the WAT. Obesity-related IR is associated with the downregulation of mitochondrial catabolism of branched-chain amino acids (BCAAs) in the WAT, and the accumulation of BCAA and its metabolites as biomarkers in the blood could reliably indicate future T2D. Transcription factor NF-E2-related factor 2 (Nrf2), which regulates antioxidant enzyme expression in response to oxidative stress, is downregulated in insulin-resistant tissues. However, Nrf2 inducers, such as sulforaphane, could restore Nrf2 and target gene expression and attenuate IR in multiple tissues, including the WAT.

Funder

The Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3