Comparing Ozonation and Biofiltration Treatment of Source Water with High Cyanobacteria-Derived Organic Matter: The Case of a Water Treatment Plant Followed by a Small-Scale Water Distribution System

Author:

Chien I-Chieh,Wu Sheng-Pei,Ke Hsien-Chun,Lo Shang-Lien,Tung Hsin-hsin

Abstract

High cyanobacteria-derived dissolved organic carbon (DOC) in source water can cause drinking water quality to deteriorate, producing bad taste, odor, toxins, and possibly elevated levels of disinfection byproduct (DBP) precursors. Conventional water treatment processes do not effectively remove algal organic substances. In this study, rapid-sand-filtration effluent from a water treatment plant on Kinmen Island, where serious cyanobacterial blooms occurred, was used to evaluate the DOC- and DBP-removal efficiency of ozonation and/or biofiltration. To simulate a small-scale water distribution system following water treatment, 24 h simulated distribution system (SDS) tests were conducted. The following DBPs were analyzed: trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and trichloronitromethane (TCNM). Applying biological activated-carbon filtration (BAC) on its own achieved the greatest reduction in SDS-DBPs. Ozonation alone caused adverse effects by promoting THM, HAA, and TCNM formation. Ozonation and BAC filtration yielded better DOC removal (51%) than BAC filtration alone (41%). Considering the cost of ozonation, we suggest that when treating high cyanobacterial organic matter in water destined for a small-scale water distribution system, BAC biofiltration alone could be an efficient, economical option for reducing DBP precursors. If DOC removal needs to be improved, preceding ozonation could be incorporated.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3