An LLM-Based Inventory Construction Framework of Urban Ground Collapse Events with Spatiotemporal Locations

Author:

Hao Yanan12,Qi Jin12ORCID,Ma Xiaowen3,Wu Sensen12ORCID,Liu Renyi12,Zhang Xiaoyi4ORCID

Affiliation:

1. School of Earth Sciences, Zhejiang University, Hangzhou 310027, China

2. Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310028, China

3. Research Center for Intelligent Technology Standardization, Zhejiang Lab, Hangzhou 311121, China

4. School of Spatial Planning and Design, Hangzhou City University, Hangzhou 310015, China

Abstract

Historical news media reports serve as a vital data source for understanding the risk of urban ground collapse (UGC) events. At present, the application of large language models (LLMs) offers unprecedented opportunities to effectively extract UGC events and their spatiotemporal information from a vast amount of news reports and media data. Therefore, this study proposes an LLM-based inventory construction framework consisting of three steps: news reports crawling, UGC event recognition, and event attribute extraction. Focusing on Zhejiang province, China, as the test region, a total of 27 cases of collapse events from 637 news reports were collected for 11 prefecture-level cities. The method achieved a recall rate of over 60% and a precision below 35%, indicating its potential for effectively and automatically screening collapse events; however, the accuracy needs to be improved to account for confusion with other urban collapse events, such as bridge collapses. The obtained UGC event inventory is the first open access inventory based on internet news reports, event dates and locations, and collapse co-ordinates derived from unstructured contents. Furthermore, this study provides insights into the spatial pattern of UGC frequency in Zhejiang province, effectively supplementing the statistical data provided by the local government.

Funder

National Key Research and Development Program of China

Provincial Key R&D Program of Zhejiang

Deep-time Digital Earth (DDE) Big Science Program

joint Funds of the Zhejiang Provincial Natural Science Foundation of China

Scientific Research Foundation of Zhejiang University City College

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Urban Foundation Models: A Survey;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3