Evaluating the Impact of Human Activities on Vegetation Restoration in Mining Areas Based on the GTWR

Author:

Guo Li1,Li Jun1ORCID,Zhang Chengye1ORCID,Xu Yaling1,Xing Jianghe1,Hu Jingyu1

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

The clarification of the impact of human activities on vegetation in mining areas contributes to the harmonization of mining and environmental protection. This study utilized Geographically and Temporally Weighted Regression (GTWR) to establish a quantitative relationship among the Normalized Difference Vegetation Index (NDVI), temperature, precipitation, and Digital Elevation Model (DEM). Furthermore, residual analysis was performed to remove the impact of natural factors and separately assess the impact of human activities on vegetation restoration. The experiment was carried out in Shangwan Mine, China, and following results were obtained: (1) During the period of 2000 to 2020, intensified huan activities corresponded to positive vegetation changes (NDVI-HA) that exhibited an upward trend over time. (2) The spatial heterogeneity of vegetation restoration was attributed to the DEM. It is negatively correlated with NDVI in natural conditions, while under the environment of mining activities, there is a positive correlation between NDVI-HA and DEM. (3) The contribution of human activities to vegetation restoration in mining areas has been steadily increasing, surpassing the influences of temperature and precipitation since 2010. The results of this study can provide important references for the assessment of vegetation restoration to some extent in mining areas.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3