Novel Sodium Carbonate Activation for Manufacturing Sludge-Based Biochar and Assessment of Its Organic Adsorption Property in Treating Wool Scouring Wastewater

Author:

Zhang Wanru1,Huang Hongrong1,Cao Zhen1,Kang Shuyu1,Shi Xueqing1,Ma Weiwei1,Ratnaweera Harsha1

Affiliation:

1. National and Local & Joint Engineering Research Center for Urban Sewage Treatment and Resource Recycling, School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China

Abstract

Under the concept of green and low-carbon development, efficient and environmentally friendly biochar preparation methods have attracted much attention. This study assessed a novel sodium carbonate activator combined with acid modification for sludge-based biochar (SB) production and its adsorption of organics in wool scouring wastewater. Under 600 °C, the optimal carbonization temperature, the residual weight percentage of biochar carbonized material increases from 27% to 73% after Na2CO3 activation compared to ZnCl2 activation. Compared to HCl-modified ZnCl2-activated biochar (Zn-Cl-SB), HCl-H2SO4-modified Na2CO3-activated biochar (Na-Cl/S-SB) had a specific surface area of 509.3 m2/g, and the average mesopore size was 7.896 nm, with micropore volume and specific surface area increasing by 83.3% and 79.8%, respectively. Meanwhile, the C-O oxygen-containing functional groups and pyrrole nitrogen-containing functional groups were significantly increased. Na-Cl/S-SB exhibited an excellent adsorption performance for organic matter in wool scouring wastewater, with a maximum adsorption capacity of 168.3 mg/g. Furthermore, the adsorption process followed the pseudo-second-order kinetic model. Three-dimensional fluorescence spectrum analysis showed that Na-Cl/S-SB had a strong adsorption capacity for aromatic protein analogs, proteins containing benzene rings, and dissolved microbial by-products in wool scouring wastewater. This study will serve as a guideline for the green synthesis of SB while improving its ability to adsorb pollutants.

Funder

Shandong Provincial Youth Innovation Science and Technology Support Program for Higher Education Institutions

National Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3