In Vitro and In Vivo Studies of Heraclenol as a Novel Bacterial Histidine Biosynthesis Inhibitor against Invasive and Biofilm-Forming Uropathogenic Escherichia coli

Author:

Kaur Harpreet,Chaudhary Naveen,Modgil VinayORCID,Kalia Manmohit,Kant Vishal,Mohan Balvinder,Bhatia Alka,Taneja NeelamORCID

Abstract

Globally, urinary tract infections (UTIs) are one of the most frequent bacterial infections. Uropathogenic Escherichia coli (UPEC) are the predominant etiological agents causing community and healthcare-associated UTIs. Biofilm formation is an important pathogenetic mechanism of UPEC responsible for chronic and recurrent infections. The development of high levels of antimicrobial resistance (AMR) among UPEC has complicated therapeutic management. Newer antimicrobial agents are needed to tackle the increasing trend of AMR and inhibit biofilms. Heraclenol is a natural furocoumarin compound that inhibits histidine biosynthesis selectively. In this study, for the first time, we have demonstrated the antimicrobial and antibiofilm activity of heraclenol against UPEC. The drug reduced the bacterial load in the murine catheter UTI model by ≥4 logs. The drug effectively reduced bacterial loads in kidney, bladder, and urine samples. On histopathological examination, heraclenol treatment showed a reversal of inflammatory changes in the bladder and kidney tissues. It reduced the biofilm formation by 70%. The MIC value of heraclenol was observed to be high (1024 µg/mL), though the drug at MIC concentration did not have significant cytotoxicity on the Vero cell line. Further molecular docking revealed that heraclenol binds to the active site of the HisC, thereby preventing its activation by native substrate, which might be responsible for its antibacterial and antibiofilm activity. Since the high MIC of heraclenol is not achievable clinically in human tissues, further chemical modifications will be required to lower the drug’s MIC value and increase its potency. Alternatively, its synergistic action with other antimicrobials may also be studied.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference38 articles.

1. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options;Walker;Nat. Rev. Microbiol.,2015

2. Urinary Tract Infections: Disease Panorama and Challenges;Stamm;J. Infect. Dis.,2001

3. Extended Spectrum Beta -Lactamase, Biofilm-Producing Uropathogenic Pathogens and Their Antibiotic Susceptibility Patterns from Urinary Tract Infection- An Overview;Ponnusamy;Int. J. Microbiol. Res.,2013

4. Virulence Factors of Uropathogenic Escherichia Coli;Emody;Int. J. Antimicrob. Agents,2003

5. Biofilm Infections, Their Resilience to Therapy and Innovative Treatment Strategies;Balsalobre;J. Intern. Med.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3