Photoinactivation of Planktonic Cells, Pseudohyphae, and Biofilms of Candida albicans Sensitized by a Free-Base Chlorin and Its Metal Complexes with Zn(II) and Pd(II)

Author:

Cordero Paula V.,Alvarez María G.ORCID,Gonzalez Lopez Edwin J.ORCID,Heredia Daniel A.ORCID,Durantini Edgardo N.ORCID

Abstract

Invasive candidiasis is an important cause of morbidity and mortality, and its occurrence is increasing due to the growing complexity of patients. In particular, Candida albicans exhibits several virulence factors that facilitate yeast colonization in humans. In this sense, the photodynamic inactivation of yeasts is a promising new alternative to eliminate fungal infections. Herein, the photodynamic activity sensitized by a free-base chlorin (TPCF16) and its complexes with Zn(II) (ZnTPCF16) and Pd(II) (PdTPCF16) was investigated in order to eliminate C. albicans under different forms of cell cultures. A decrease in cell survival of more than 5 log was found in planktonic cells incubated with 5 μM TPCF16 or ZnTPCF16 upon 15 min of white-light irradiation. The mechanism of action mainly involved a type II pathway in the inactivation of C. albicans cells. In addition, the photodynamic action induced by these chlorins was able to suppress the growth of C. albicans in a culture medium. These photosensitizers were also effective to photoinactivate C. albicans pseudohyphae suspended in PBS. Furthermore, the biofilms of C. albicans that incorporated the chlorins during the proliferation stage were completely eradicated using 5 μM TPCF16 or ZnTPCF16 after 60 min of light irradiation. The studies indicated that these chlorins are effective photosensitizing agents to eliminate C. albicans as planktonic cells, pseudohyphae, and biofilms.

Funder

ANPCYT

CONICET

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3