Heterogeneous Phenotypic Responses of Antibiotic-Resistant Salmonella Typhimurium to Food Preservative-Related Stresses

Author:

Yi Jiseok1,Ahn Juhee12ORCID

Affiliation:

1. Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea

2. Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea

Abstract

This study was designed to evaluate the response of antibiotic-resistant Salmonella Typhimurium to food preservative-related stresses, such as lactic acid and sodium chloride (NaCl). S. Typhimurium cells were exposed to 1 µg/mL of ciprofloxacin (CIP), 0.2% lactic acid (LA), 6% NaCl, CIP followed by LA (CIP-LA), and CIP followed by NaCl (CIP-NaCl). The untreated S. Typhimurium cells were the control (CON). All treatments were as follows: CON, CIP, LA, NaCl, CIP-LA, and CIP-NaCl. The phenotypic heterogeneity was evaluated by measuring the antimicrobial susceptibility, bacterial fluctuation, cell injury, persistence, and cross-resistance. The CIP, CIP-LA, and CIP-NaCl groups were highly resistant to ciprofloxacin, showing MIC values of 0.70, 0.59, and 0.54 µg/mL, respectively, compared to the CON group (0.014 µg/mL). The susceptibility to lactic acid was not changed after exposure to NaCl, while that to NaCl was decreased after exposure to NaCl. The Eagle phenomenon was observed in the CIP, CIP-LA, and CIP-NaCl groups, showing Eagle effect concentrations (EECs) of more than 8 µg/mL. No changes in the MBCs of lactic acid and NaCl were observed in the CIP, LA, and CIP-LA groups, and the EECs of lactic acid and NaCl were not detected in all treatments. The bacterial fluctuation rates of the CIP-LA and CIP-NaCl groups were considerably increased to 33% and 41%, respectively, corresponding to the injured cell proportions of 82% and 89%. CIP-NaCl induced persister cells as high as 2 log cfu/mL. The LA and NaCl treatments decreased the fitness cost. The CIP-NaCl treatment showed positive cross-resistance to erythromycin (ERY) and tetracycline (TET), while the LA and NaCl treatments were collaterally susceptible to chloramphenicol (CHL), ciprofloxacin (CIP), piperacillin (PIP), and TET. The results provide new insight into the fate of antibiotic-resistant S. Typhimurium during food processing and preservation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference55 articles.

1. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects;Uddin;J. Infect. Pub. Health,2021

2. Antibiotic resistance and epigenetics: More to it than meets the eye;Ghosh;Antimicrob. Agents Chemother.,2020

3. Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, Mycoplasma mycoides JCVI-Syn3B;Hossain;iScience,2021

4. Antibiotics: Combatting tolerance to stop resistance;Windels;MBio,2019

5. Evolutionary approaches to combat antibiotic resistance: Opportunities and challenges for precision medicine;Merker;Front. Inmmunol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3