Effect of N-Acetyl-L-cysteine on Activity of Doxycycline against Biofilm-Forming Bacterial Strains

Author:

Petkova Tsvetelina1ORCID,Rusenova Nikolina2,Danova Svetla3,Milanova Aneliya1ORCID

Affiliation:

1. Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria

2. Department of Veterinary Microbiology, Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria

3. The Stephan Angeloff Institute of Microbiology, BAS, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria

Abstract

Biofilm-forming bacteria are associated with difficult-to-cure bacterial infections in veterinary patients. According to previous studies, N-acetyl-L-cysteine (NAC) showed an inhibitory effect on biofilm formation when it was applied in combination with beta-lactam antibiotics and fluoroquinolones. The lack of information about the effect of NAC on doxycycline activity against biofilm-forming strains was the reason for conducting this study. Staphylococcus aureus (S. aureus) ATCC 25923, Staphylococcus aureus O74, Escherichia coli (E. coli) ATCC 25922 and Pseudomonas aeruginosa (P. aeruginosa) ATCC 27853 were used to evaluate the activity of doxycycline with and without addition of NAC on planktonic bacteria and on biofilm formation. The minimum inhibitory concentrations (MICs) of doxycycline were not affected by NAC for Gram-negative strains and were found to be two times higher for the strains of S. aureus. The minimum biofilm inhibitory concentrations (MBICs) for Gram-negative bacteria (2 μg/mL for E. coli ATCC 25922 and 32 μg/mL for P. aeruginosa ATCC 27853), determined using a standard safranin colorimetric assay, were higher than the MICs (0.5 and 4 μg/mL, respectively). The data suggest that the combinations of doxycycline and NAC could stimulate the growth of planktonic cells of S. aureus and biofilm-forming E. coli ATCC 25922. NAC did not affect the strong inhibitory effect of doxycycline on the biofilm formation by the strains of S. aureus.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3