Effect of Escin Alone or in Combination with Antifungal Agents on Resistant Candida glabrata Biofilms: Mechanisms of Action

Author:

Maione Angela1ORCID,Imparato Marianna1,Galdiero Marilena2ORCID,Alteriis Elisabetta de1ORCID,Feola Antonia1ORCID,Galdiero Emilia1234ORCID,Guida Marco1234ORCID

Affiliation:

1. Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy

2. Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy

3. National Biodiversity Future Center (NBFC), 90133 Palermo, Italy

4. Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy

Abstract

Nowadays, the increase in antimicrobial-resistant fungi (AMR) is certainly a major health concern, and the development of alternative therapeutic strategies has become crucial. Natural products have been used to treat various infections, and their chemical properties contribute to the performance of their biological activities, such as antifungal action. The various virulence factors and mechanisms of resistance to antifungals contribute to making Candida glabrata one of the most frequent agents of candidiasis. Here we investigate the in vitro and in vivo activity of β-escin against Candida glabrata. The β-escin MICs were determined for a reference strain and two clinical isolates of C. glabrata. Furthermore, growth kinetics assays and biofilm inhibition/eradication assays (crystal violet) were performed. The differences in the expression of some anti-biofilm-associated genes were analyzed during biofilm inhibition treatment so that reactive oxygen species could be detected. The efficacy of β-escin was evaluated in combination with fluconazole, ketoconazole, and itraconazole. In addition, a Galleria mellonella infection model was used for in vivo treatment assays. Results have shown that β-escin had no toxicity in vitro or in vivo and was able to inhibit or destroy biofilm formation by downregulating some important genes, inducing ROS activity and affecting the membrane integrity of C. glabrata cells. Furthermore, our study suggests that the combination with azoles can have synergistic effects against C. glabrata biofilm. In summary, the discovery of new antifungal drugs against these resistant fungi is crucial and could potentially lead to the development of future treatment strategies.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3