Innovative Alignment-Based Method for Antiviral Peptide Prediction

Author:

de Llano García Daniela1ORCID,Marrero-Ponce Yovani234ORCID,Agüero-Chapin Guillermin56ORCID,Ferri Francesc J.4ORCID,Antunes Agostinho56ORCID,Martinez-Rios Felix3,Rodríguez Hortensia1ORCID

Affiliation:

1. School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Imbabura, Ecuador

2. Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador

3. Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Benito Juárez 03920, Ciudad de México, Mexico

4. Computer Science Department, Universitat de València, 46100 Valencia, Burjassot, Spain

5. CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal

6. Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal

Abstract

Antiviral peptides (AVPs) represent a promising strategy for addressing the global challenges of viral infections and their growing resistances to traditional drugs. Lab-based AVP discovery methods are resource-intensive, highlighting the need for efficient computational alternatives. In this study, we developed five non-trained but supervised multi-query similarity search models (MQSSMs) integrated into the StarPep toolbox. Rigorous testing and validation across diverse AVP datasets confirmed the models’ robustness and reliability. The top-performing model, M13+, demonstrated impressive results, with an accuracy of 0.969 and a Matthew’s correlation coefficient of 0.71. To assess their competitiveness, the top five models were benchmarked against 14 publicly available machine-learning and deep-learning AVP predictors. The MQSSMs outperformed these predictors, highlighting their efficiency in terms of resource demand and public accessibility. Another significant achievement of this study is the creation of the most comprehensive dataset of antiviral sequences to date. In general, these results suggest that MQSSMs are promissory tools to develop good alignment-based models that can be successfully applied in the screening of large datasets for new AVP discovery.

Funder

USFQ MED

FCT

Publisher

MDPI AG

Reference46 articles.

1. Virology in the 21st Century;Enquist;J. Virol.,2009

2. Therapeutic Peptides: Current Applications and Future Directions;Wang;Signal Transduct. Target. Ther.,2022

3. Mechanisms of Viral Mutation;Cell. Mol. Life Sci.,2016

4. New Vaccines: Challenges of Discovery;Mahmoud;Microb. Biotechnol.,2016

5. Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability;Carter;Curr. Protein Pept. Sci.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3