Identifying Antibiotic Use Targets for the Management of Antibiotic Resistance Using an Extended-Spectrum β-Lactamase-Producing Escherichia coli Case: A Threshold Logistic Modeling Approach

Author:

Aldeyab Mamoon A.ORCID,Bond Stuart E.ORCID,Conway Barbara R.ORCID,Lee-Milner JadeORCID,Sarma Jayanta B.ORCID,Lattyak William J.

Abstract

The aim of this study was to develop a logistic modeling concept to improve understanding of the relationship between antibiotic use thresholds and the incidence of resistant pathogens. A combined approach of nonlinear modeling and logistic regression, named threshold logistic, was used to identify thresholds and risk scores in hospital-level antibiotic use associated with hospital-level incidence rates of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli). Threshold logistic models identified thresholds for fluoroquinolones (61.1 DDD/1000 occupied bed days (OBD)) and third-generation cephalosporins (9.2 DDD/1000 OBD) to control hospital ESBL-producing E. coli incidence. The 60th percentile of ESBL-producing E. coli was determined as the cutoff for defining high incidence rates. Threshold logistic analysis showed that for every one-unit increase in fluoroquinolones and third-generation cephalosporins above 61.1 and 9.2 DDD/1000 OBD levels, the average odds of the ESBL-producing E. coli incidence rate being ≥60th percentile of historical levels increased by 4.5% and 12%, respectively. Threshold logistic models estimated the risk scores of exceeding the 60th percentile of a historical ESBL-producing E. coli incidence rate. Threshold logistic models can help hospitals in defining critical levels of antibiotic use and resistant pathogen incidence and provide targets for antibiotic consumption and a near real-time performance monitoring feedback system.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

Reference45 articles.

1. Global antibiotics use and resistance;Aldeyab,2020

2. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. The Review on Antimicrobial Resistance https://amr-review.org/Publications.html

3. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

4. The true cost of antimicrobial resistance

5. Antibiotic resistance—the need for global solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3