Affiliation:
1. School of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China
Abstract
Spatiotemporal data from urban road traffic are pivotal for intelligent transportation systems and urban planning. Nonetheless, missing data in traffic datasets is a common challenge due to equipment failures, communication issues, and monitoring limitations, especially the missing not at random (MNAR) problem. This research introduces an approach to address MNAR-type missing data in traffic status prediction, utilizing a multidimensional feature sequence and a second-order hidden Markov model (2nd-order HMM). First, this approach involves extracting spatiotemporal features for the preset data sections and spatial features for the sections to be predicted based on the traffic spatiotemporal characteristics. Second, using the extracted features, distinctive road traffic features are generated for each section. Furthermore, at specific intervals within the defined time period, nearest distance feature matching is introduced to ascertain the traffic attributes of the road section under prediction. Finally, relying on the matched status results, a 2nd-order HMM is employed to forecast the traffic status for subsequent moments within the defined time period. Experiments were carried out using datasets from Shenzhen City and compared against the hidden Markov models and contrast measure (HMM-C) method to affirm the efficacy of the proposed approach.
Funder
Key R&D Program of Ningxia
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Traffic Flow Prediction Based on Federated Learning and Spatio-Temporal Graph Neural Networks;ISPRS International Journal of Geo-Information;2024-06-18
2. Ship Track Prediction based PSO-LSTM;2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC);2023-11-17