BiLSTM for Predicting Post-Construction Subsoil Settlement under Embankment: Advancing Sustainable Infrastructure

Author:

Wang Liyang1,Li Taifeng1,Wang Pengcheng1,Liu Zhenyu1,Zhang Qianli1

Affiliation:

1. Railway Engineering Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081, China

Abstract

The load and settlement histories of stage-constructed embankments provide critical insights into long-term surface behavior under embankment loading. However, these data often remain underutilized in predicting post-construction settlement in the absence of geotechnical subsoil characterization. To address this limitation, the current study integrates bidirectional long short-term memory (BiLSTM) into a three-phase framework: data preparation, model construction, and performance evaluation. In the data preparation phase, the feature vector comprises basal pressure, pressure increments, time intervals, and prior settlement values to facilitate a rolling forecast. To manage unevenly spaced data, an Akima spline standardizes the desired time intervals. The model’s efficacy is validated using observational data from two distinct construction case studies, each featuring diverse soil conditions. BiLSTM proves effective in identifying key attributes from load and settlement data during the staged construction process. Compared to traditional curve-fitting methods, the BiLSTM model exhibits superior performance, robustness, and adaptability to varying soil conditions. Additionally, the model demonstrates low sensitivity to the range of post-construction data, allowing for a data collection period reduction—from six months to three—without compromising prediction accuracy (relative error = 0.92%). These advantages not only optimize resource allocation but also contribute to broader sustainability objectives.

Funder

National Key R&D Program “Transportation Infrastructure” project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3