Rough-Set-Based Rule Induction with the Elimination of Outdated Big Data: Case of Renewable Energy Equipment Promotion

Author:

Huang Chun-Che1ORCID,Liang Wen-Yau2,Gung Roger R.3,Wang Pei-An1

Affiliation:

1. Department of Information Management, National Chi Nan University, 1 University Road, Nantou 545, Taiwan

2. Department of Information Management, National Changhua University of Education, 1, Jin-De Road, Changhua 511, Taiwan

3. Department of Business Analytics & Operations Research, University of Phoenix, 4025 S Riverpoint Parkway, Phoenix, AZ 85040, USA

Abstract

As developing economies become more industrialized, the energy problem has become a major challenge in the twenty-first century. Countries around the world have been developing renewable energy to meet the Sustainable Development Goals (SDGs) of the United Nations (UN) and the 26th UN Climate Change Conference of the Parties (COP26). Leaders of enterprises have been made aware of the need to protect the environment and have been practicing environmental marketing strategies and green information systems (GISs) as part of ESG practices. With the rapid growth of the available data from renewable electricity suppliers, the analyses of multi-attribute characteristics across different fields of studies use data mining to obtain viable rule induction and achieve adaptive management. Rough set theory is an appropriate method for multi-attribute classification and rule induction. Nevertheless, past studies for Big Data analytics have tended to focus on incremental algorithms for dynamic databases. This study entails rough set theory from the perspective of the decrement decay alternative rule-extraction algorithm (DAREA) to explore rule induction and present case evidence with managerial implications for the emerging renewable energy industry. This study innovates rough set research to handle data deletion in a Big Data system and promotes renewable energy with valued managerial implications.

Funder

National Science and Technology Council of Taiwan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3