Evapotranspiration Acquired with Remote Sensing Thermal-Based Algorithms: A State-of-the-Art Review

Author:

García-Santos VicenteORCID,Sánchez Juan ManuelORCID,Cuxart JoanORCID

Abstract

Almost fifty years have passed since the idea to retrieve a value for Evapotranspiration (ET) using remote sensing techniques was first considered. Numerous ET models have been proposed, validated and improved along these five decades, as the satellites and sensors onboard were enhanced. This study reviews most of the efforts in the progress towards providing a trustworthy value of ET by means of thermal remote sensing data. It starts with an in-depth reflection of the surface energy balance concept and of each of its terms, followed by the description of the approaches taken by remote sensing models to estimate ET from it in the last thirty years. This work also includes a chronological review of the modifications suggested by several researchers, as well as representative validations studies of such ET models. Present limitations of ET estimated with remote sensors onboard orbiting satellites, as well as at surface level, are raised. Current trends to face such limitations and a future perspective of the discipline are also exposed, for the reader’s inspiration.

Funder

Government of Spain

Generalitat Valenciana

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3