Effects of Thyroid Hormone on Tissue Hypoxia: Relevance to Sepsis Therapy

Author:

Lourbopoulos Athanasios I.,Mourouzis Iordanis S.,Trikas Athanasios G.,Tseti Ioulia K.,Pantos Constantinos I.

Abstract

Tissue hypoxia occurs in various conditions such as myocardial or brain ischemia and infarction, sepsis, and trauma, and induces cellular damage and tissue remodeling with recapitulation of fetal-like reprogramming, which eventually results in organ failure. Analogies seem to exist between the damaged hypoxic and developing organs, indicating that a regulatory network which drives embryonic organ development may control aspects of heart (or tissue) repair. In this context, thyroid hormone (TH), which is a critical regulator of organ maturation, physiologic angiogenesis, and mitochondrial biogenesis during fetal development, may be of important physiological relevance upon stress (hypoxia)-induced fetal reprogramming. TH signaling has been implicated in hypoxic tissue remodeling after myocardial infarction and T3 prevents remodeling of the postinfarcted heart. Similarly, preliminary experimental evidence suggests that T3 can prevent early tissue hypoxia during sepsis with important physiological consequences. Thus, based on common pathways between different paradigms, we propose a possible role of TH in tissue hypoxia after sepsis with the potential to reduce secondary organ failure.

Publisher

MDPI AG

Subject

General Medicine

Reference154 articles.

1. New Insights toward the Acute Non-Thyroidal Illness Syndrome

2. The hypothalamus-pituitary-thyroid axis in critical illness;Mebis;Neth. J. Med.,2009

3. Non-thyroidal illness syndrome in patients with cardiovascular diseases: A systematic review and meta-analysis

4. Low triiodothyronine: a strong predictor of outcome in acute stroke patients

5. Organ Dysfunction in Sepsis: An Ominous Trajectory From Infection To Death;Caraballo;Yale J. Biol. Med.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3