Probability-Based Propagation Characteristics from Meteorological to Hydrological Drought and Their Dynamics in the Wei River Basin, China

Author:

Du Meng12,Liu Yongjia23,Huang Shengzhi12ORCID,Zheng Hao2,Huang Qiang2

Affiliation:

1. Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China

3. Shenzhen DongShen Intelligent Water Company Limited, Shenzhen 518057, China

Abstract

Understanding the propagation characteristics and driving factors from meteorological drought to hydrological drought is essential for alleviating drought and for early warning systems regarding drought. This study focused on the Weihe River basin (WRB) and its two subregions (the Jinghe River (JRB) and the middle reaches of the Weihe River (MWRB)), utilizing the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) to characterize meteorological and hydrological drought, respectively. Based on Copula theory and conditional probability, a quantification model for the propagation time (PT) of meteorological–hydrological drought was constructed. The dynamic characteristics of PT on annual and seasonal scales were explored. Additionally, the influences of different seasonal meteorological factors and underlying surface factors on the dynamic changes in PT were analyzed. The main conclusions were as follows: (1) The PT of meteorological–hydrological drought was characterized by faster propagation during the hot months (June–September) and slower propagation during the cold months (December to March of the following year); (2) Under the same level of hydrological drought, as the level of meteorological drought increases, the PT of the drought shortens. The propagation thresholds of meteorological to hydrological drought in the WRB, the JRB, and the MWRB are −0.69, −0.81, and −0.78, respectively. (3) In the dynamic changes in PT, the WRB showed a non-significant decrease; however, both the JRB and the MWRB exhibited a significant increase in PT across different drought levels. (4) The influence of the water and heat status during spring, summer, and winter on PT was more pronounced, while in autumn, the impact of the basin’s water storage and discharge status was more significant in the JRB and the MWRB.

Funder

Open Research Foundation of Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3