Finishing Turning of Ni Superalloy Haynes 282

Author:

Díaz-Álvarez José,Díaz-Álvarez Antonio,Miguélez Henar,Cantero José

Abstract

Nickel-based superalloys are widely used in the aeronautical industry, especially in components requiring excellent corrosion resistance, enhanced thermal fatigue properties, and thermal stability. Haynes 282 is a nickel-based superalloy that was developed to improve the low weldability, formability, and creep strength of other γ’-strengthened Ni superalloys. Despite the industrial interest in Haynes 282, there is a lack of research that is focused on this alloy. Moreover, it is difficult to find studies dealing with the machinability of Haynes 282. Although Haynes 282 is considered an alloy with improved formability when compared with other nickel alloys, its machining performance should be analyzed. High pressure and temperature localized in the cutting zone, the abrasion generated by the hard carbides included in the material, and the tendency toward adhesion during machining are phenomena that generate extreme thermomechanical loading on the tool during the cutting process. Excessive wear results in reduced tool life, leading to frequent tool change, low productivity, and a high consumption of energy; consequentially, there are increased costs. With regard to tool materials, cemented carbide tools are widely used in different applications, and carbide is a recommended cutting material for turning Haynes 282, for both finishing and roughing operations. This work focuses on the finishing turning of Haynes 282 using coated carbide tools with conventional coolant. Machining forces, surface roughness, tool wear, and tool life were quantified for different cutting speeds and feeds.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3