Combining Cryo-Thermal Therapy with Anti-IL-6 Treatment Promoted the Maturation of MDSCs to Induce Long-Term Survival in a Mouse Model of Breast Cancer

Author:

Du Peishan1,Zheng Jiamin1,Wang Shicheng1ORCID,Lou Yue1,Zhang Zelu1,Wang Junjun1,Zhu Yongxin1,You Jiaqi1,Zhang Aili1,Liu Ping1

Affiliation:

1. School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China

Abstract

Immunosuppression plays a significant role in tumor recurrence and metastasis, ultimately causing poor survival outcomes. Overcoming immunosuppression and stimulating durable antitumor immunity are essential for tumor treatment. In our previous study, a novel cryo-thermal therapy involving liquid nitrogen freezing and radiofrequency heating could reduce the proportion of Myeloid-derived suppressor cells (MDSCs), but the remaining MDSCs produced IL-6 by the NF-κB pathway, resulting in an impaired therapeutic effect. Therefore, here we combined cryo-thermal therapy with anti-IL-6 treatment to target the MDSC-dominant immunosuppressive environment, thereby optimizing the efficacy of cryo-thermal therapy. We found that combinational treatment significantly increased the long-term survival rate of breast cancer-bearing mice. Mechanistic investigation revealed that combination therapy was capable of reducing the proportion of MDSCs in the spleen and blood while promoting their maturation, which resulted in increased Th1-dominant CD4+ T-cell differentiation and enhancement of CD8+ T-mediated tumor killing. In addition, CD4+ Th1 cells promoted mature MDSCs to produce IL-7 through IFN-γ, indirectly contributing to the maintenance of Th1-dominant antitumor immunity in a positive feedback loop. Our work suggests an attractive immunotherapeutic strategy targeting the MDSC-dominant immunosuppressive environment, which would offer exciting opportunities for highly immunosuppressive and unresectable tumors in the clinic.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Shanghai Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3