Advances in the Electrophysiological Recordings of Long-Term Potentiation

Author:

Jiang Feixu1,Bello Stephen Temitayo1ORCID,Gao Qianqian1,Lai Yuanying1,Li Xiao12,He Ling12

Affiliation:

1. Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong

2. Research Institute of City University of Hong Kong, Shenzhen 518057, China

Abstract

Understanding neuronal firing patterns and long-term potentiation (LTP) induction in studying learning, memory, and neurological diseases is critical. However, recently, despite the rapid advancement in neuroscience, we are still constrained by the experimental design, detection tools for exploring the mechanisms and pathways involved in LTP induction, and detection ability of neuronal action potentiation signals. This review will reiterate LTP-related electrophysiological recordings in the mammalian brain for nearly 50 years and explain how excitatory and inhibitory neural LTP results have been detected and described by field- and single-cell potentials, respectively. Furthermore, we focus on describing the classic model of LTP of inhibition and discuss the inhibitory neuron activity when excitatory neurons are activated to induce LTP. Finally, we propose recording excitatory and inhibitory neurons under the same experimental conditions by combining various electrophysiological technologies and novel design suggestions for future research. We discussed different types of synaptic plasticity, and the potential of astrocytes to induce LTP also deserves to be explored in the future.

Funder

Hong Kong Research Grants Council, Collaborative Research Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3