A Novel Microbial Consortia Catalysis Strategy for the Production of Hydroxytyrosol from Tyrosine

Author:

Gong Pengfei1,Tang Jiali1,Wang Jiaying1,Wang Chengtao1,Chen Wei1ORCID

Affiliation:

1. Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China

Abstract

Hydroxytyrosol, a valuable plant-derived phenolic compound, is increasingly produced from microbial fermentation. However, the promiscuity of the key enzyme HpaBC, the two-component flavin-dependent monooxygenase from Escherichia coli, often leads to low yields. To address this limitation, we developed a novel strategy utilizing microbial consortia catalysis for hydroxytyrosol production. We designed a biosynthetic pathway using tyrosine as the substrate and selected enzymes and overexpressing glutamate dehydrogenase GdhA to realize the cofactor cycling by coupling reactions catalyzed by the transaminase and the reductase. Additionally, the biosynthetic pathway was divided into two parts and performed by separate E. coli strains. Furthermore, we optimized the inoculation time, strain ratio, and pH to maximize the hydroxytyrosol yield. Glycerol and ascorbic acid were added to the co-culture, resulting in a 92% increase in hydroxytyrosol yield. Using this approach, the production of 9.2 mM hydroxytyrosol was achieved from 10 mM tyrosine. This study presents a practical approach for the microbial production of hydroxytyrosol that can be promoted to produce other value-added compounds.

Funder

Beijing Municipal Natural Science Foundation-Beijing Municipal Education Commission Science and Technology Plan Key Joint Project

Beijing Engineering Technology Research Center Platform Construction Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3