Photochemically Aided Arteriovenous Fistula Creation to Accelerate Fistula Maturation

Author:

He Yong1,Anderson Blake2,Hu Qiongyao1ORCID,Hayes RB2,Huff Kenji2ORCID,Isaacson Jim2,Warner Kevin S.2,Hauser Hank2,Greenberg Myles2,Chandra Venita3,Kauser Katalin2ORCID,Berceli Scott A.14

Affiliation:

1. Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL 32611, USA

2. Alucent Biomedical Inc., Salt Lake City, UT 84108, USA

3. Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA

4. North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA

Abstract

Rates of arteriovenous fistula maturation failure are still high, especially when suboptimal size veins are used. During successful maturation, the vein undergoes lumen dilatation and medial thickening, adapting to the increased hemodynamic forces. The vascular extracellular matrix plays an important role in regulating these adaptive changes and may be a target for promoting fistula maturation. In this study, we tested whether a device-enabled photochemical treatment of the vein prior to fistula creation facilitates maturation. Sheep cephalic veins were treated using a balloon catheter coated by a photoactivatable molecule (10-8-10 Dimer) and carrying an internal light fiber. As a result of the photochemical reaction, new covalent bonds were created during light activation among oxidizable amino acids of the vein wall matrix proteins. The treated vein lumen diameter and media area became significantly larger than the contralateral control fistula vein at 1 week (p = 0.035 and p = 0.034, respectively). There was also a higher percentage of proliferating smooth muscle cells in the treated veins than in the control veins (p = 0.029), without noticeable intimal hyperplasia. To prepare for the clinical testing of this treatment, we performed balloon over-dilatation of isolated human veins and found that veins can tolerate up to 66% overstretch without notable histological damage.

Funder

Alucent Biomedical Inc.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3