A Symmetrical Approach to Brain Tumor Segmentation in MRI Using Deep Learning and Threefold Attention Mechanism

Author:

Rahman Ziaur1ORCID,Zhang Ruihong1,Bhutto Jameel Ahmed1ORCID

Affiliation:

1. School of Computer, Huanggang Normal University, Huanggang 438000, China

Abstract

The symmetrical segmentation of brain tumor images is crucial for both clinical diagnosis and computer-aided prognosis. Traditional manual methods are not only asymmetrical in terms of efficiency but also prone to errors and lengthy processing. A significant barrier to the process is the complex interplay between the deep learning network for MRI brain tumor imaging and the harmonious compound of both local and global feature information, which can throw off the balance in segmentation accuracy. Addressing this asymmetry becomes essential for precise diagnosis. In answer to this challenge, we introduce a balanced, end-to-end solution for brain tumor segmentation, incorporating modifications that mirror the U-Net architecture, ensuring a harmonious flow of information. Beginning with symmetric enhancement of the visual quality of MRI brain images, we then apply a symmetrical residual structure. By replacing the convolutional modules in both the encoder and decoder sections with deep residual modules, we establish a balance that counters the vanishing gradient problem commonly faced when the network depth increases. Following this, a symmetrical threefold attention block is integrated. This addition ensures a balanced fusion of local and global image features, fine-tuning the network to symmetrically discern and learn essential image characteristics. This harmonious integration remarkably amplifies the network’s precision in segmenting MRI brain tumors. We further validate the equilibrium achieved by our proposed model using three brain tumor segmentation datasets and four metrics and by juxtaposing our model against 21 traditional and learning-based counterparts. The results confirm that our balanced approach significantly elevates performance in the segmentation of MRI brain tumor images without an asymmetrical increase in computational time.

Funder

Huanggang Normal University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3