Investigation of In Vitro Cytocompatibility of Zinc-Containing Coatings Developed on Medical Magnesium Alloys

Author:

Wang Yun1,Liu Yuzhi2,Zhu Yuanyuan123,Yu Fanglei4,Zhao Rongfang1,Lai Xinying1,Jiang Haijun1,Xu Tianhong1,Zhao Ying2,Zhang Rongfa1ORCID

Affiliation:

1. School of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

3. R & D Department, Zhejiang Ruigu Biotechnology Co., Ltd., Hangzhou 311121, China

4. Zhejiang Canwell Medical Co., Ltd., Jinhua 321000, China

Abstract

In a neutral solution, we investigated the effects of Na2[ZnEDTA] concentrations at 0, 6, 12, 18, and 24 g/L on surface morphology, chemical composition, degradation resistance, and in vitro cytocompatibility of micro-arc oxidation (MAO) coatings developed on WE43 (Mg-Y-Nd-Zr) magnesium alloys. The results show that the enhanced Na2[ZnEDTA] concentration increased the Zn amount but slightly decreased the degradation resistance of MAO-treated coatings. Among the zinc-containing MAO samples, the fabricated sample in the base solution added 6 g/L Na2[ZnEDTA] exhibits the smallest corrosion current density (6.84 × 10−7 A·cm−2), while the sample developed in the solution added 24 g/L Na2[ZnEDTA] and contains the highest Zn content (3.64 wt.%) but exhibits the largest corrosion current density (1.39 × 10−6 A·cm−2). Compared to untreated WE43 magnesium alloys, zinc-containing MAO samples promote initial cell adhesion and spreading and reveal enhanced cell viability. Coating degradation resistance plays a more important role in osseogenic ability than Zn content. Among the untreated WE43 magnesium alloys and the treated MAO samples, the sample developed in the base solution with 6 g/L Na2[ZnEDTA] reveals the highest ALP expression at 14 d. Our results indicate that the MAO samples formed in the solution with Na2[ZnEDTA] promoted degradation resistance and osseogenesis differentiation of the WE43 magnesium alloys, suggesting potential clinic applications.

Funder

National Natural Science Foundation of China

Open Fund of Material Corrosion and Protection Key Laboratory of Sichuan Province

Natural Science Foundation of Guangdong Province

Science and Technology Innovation Commission of Shenzhen

Open Project Program of Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3