Transient Pressure Performance Analysis of Hydraulically Fractured Horizontal Well in Tight Oil Reservoir

Author:

Sun Lichun1,Fang Maojun1ORCID,Fan Weipeng1,Li Hao1,Li Longlong23ORCID

Affiliation:

1. CNOOC Research Institute Ltd., Beijing 100028, China

2. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

3. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Utilizing the discrete fracture model (DFM), a transient flow model is established for fractured horizontal wells in tight oil reservoirs, accounting for threshold pressure gradient (TPG), stress sensitivity effect, hydraulic fracture parameters, and fracture distribution pattern. This model is solved using the finite-volume method (FVM), and an important sensitivity analysis is conducted. The findings reveal that the models incorporated by the threshold pressure gradient result in an upward trend in the pressure-derivative curve. As the threshold pressure gradient increases, this upward trend becomes more pronounced, rendering the distinction between flow regimes more challenging. The stress sensitivity effect predominantly impacts the pressure-derivative curve during the later flow period. Additionally, as the fracture half-length increases, the pressure performance of both fracture radial flow and formation radial flow becomes more difficult. Fracture conductivity has a significant influence during the early flow period, facilitating the identification of flow regimes with the trend of increasing fracture conductivity.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3