Algorithmic Aspects of Simulation of Magnetic Field Generation by Thermal Convection in a Plane Layer of Fluid

Author:

Tolmachev Daniil1,Chertovskih Roman2ORCID,Zheligovsky Vladislav1

Affiliation:

1. Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, 84/32 Profsoyuznaya St., 117997 Moscow, Russia

2. Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Abstract

We present an algorithm for numerical solution of the equations of magnetohydrodynamics describing the convective dynamo in a plane horizontal layer rotating about an arbitrary axis under geophysically sound boundary conditions. While in many respects we pursue the general approach that was followed by other authors, our main focus is on the accuracy of simulations, especially in the small scales. We employ the Galerkin method. We use products of linear combinations (each involving two to five terms) of Chebyshev polynomials in the vertical Cartesian space variable and Fourier harmonics in the horizontal variables for space discretisation of the toroidal and poloidal potentials of the flow (satisfying the no-slip conditions on the horizontal boundaries) and magnetic field (for which the boundary conditions mimick the presence of a dielectric over the fluid layer and an electrically conducting bottom boundary), and of the deviation of temperature from the steady-state linear profile. For the chosen coefficients in the linear combinations, the products satisfy the respective boundary conditions and constitute non-orthogonal bases in the weighted Lebesgue space. Determining coefficients in the expansion of a given function in such a basis (for instance, for computing the time derivatives of these coefficients) requires solving linear systems of equations for band matrices. Several algorithms for determining the coefficients, which are exploiting algebraically precise relations, have been developed, and their efficiency and accuracy have been numerically investigated for exponentially decaying solutions (encountered when simulating convective regimes which are spatially resolved sufficiently well). For the boundary conditions satisfied by the toroidal component of the flow, our algorithm outperforms the shuttle method, but the latter proves superior when solving the problem for the conditions characterising the poloidal component. While the conditions for the magnetic field on the horizontal boundaries are quite specific, our algorithms for the no-slip boundary conditions are general-purpose and can be applied for treating other boundary-value problems in which the zero value must be admitted on the boundary.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3