Machine Learning at the Service of Survival Analysis: Predictions Using Time-to-Event Decomposition and Classification Applied to a Decrease of Blood Antibodies against COVID-19

Author:

Štěpánek Lubomír1ORCID,Habarta Filip1ORCID,Malá Ivana1ORCID,Štěpánek Ladislav2ORCID,Nakládalová Marie2ORCID,Boriková Alena2ORCID,Marek Luboš1ORCID

Affiliation:

1. Department of Statistics and Probability, Faculty of Informatics and Statistics, Prague University of Economics and Business, W. Churchill’s Square 1938/4, 130 67 Prague, Czech Republic

2. Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 185/6, 779 00 Olomouc, Czech Republic

Abstract

The Cox proportional hazard model may predict whether an individual belonging to a given group would likely register an event of interest at a given time. However, the Cox model is limited by relatively strict statistical assumptions. In this study, we propose decomposing the time-to-event variable into “time” and “event” components and using the latter as a target variable for various machine-learning classification algorithms, which are almost assumption-free, unlike the Cox model. While the time component is continuous and is used as one of the covariates, i.e., input variables for various classification algorithms such as logistic regression, naïve Bayes classifiers, decision trees, random forests, and artificial neural networks, the event component is binary and thus may be modeled using these classification algorithms. Moreover, we apply the proposed method to predict a decrease or non-decrease of IgG and IgM blood antibodies against COVID-19 (SARS-CoV-2), respectively, below a laboratory cut-off, for a given individual at a given time point. Using train-test splitting of the COVID-19 dataset (n=663 individuals), models for the mentioned algorithms, including the Cox proportional hazard model, are learned and built on the train subsets while tested on the test ones. To increase robustness of the model performance evaluation, models’ predictive accuracies are estimated using 10-fold cross-validation on the split dataset. Even though the time-to-event variable decomposition might ignore the effect of individual data censoring, many algorithms show similar or even higher predictive accuracy compared to the traditional Cox proportional hazard model. In COVID-19 IgG decrease prediction, multivariate logistic regression (of accuracy 0.811), support vector machines (of accuracy 0.845), random forests (of accuracy 0.836), artificial neural networks (of accuracy 0.806) outperform the Cox proportional hazard model (of accuracy 0.796), while in COVID-19 IgM antibody decrease prediction, neither Cox regression nor other algorithms perform well (best accuracy is 0.627 for Cox regression). An accurate prediction of mainly COVID-19 IgG antibody decrease can help the healthcare system manage, with no need for extensive blood testing, to identify individuals, for instance, who could postpone boosting vaccination if new COVID-19 variant incomes or should be flagged as high risk due to low COVID-19 antibodies.

Funder

Internal Grant Agency of the Prague University of Economics and Business

Palacký University Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3