Response of Stand Spatial Structure to Nitrogen Addition in Deciduous Broad-Leaved Forest in Jigong Mountain

Author:

Hong Liang1234,Duan Guangshuang234ORCID,Fu Shenglei34,Fu Liyong1,Ma Lei34,Li Xiaowei34,Fu Juemin5

Affiliation:

1. Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China

2. College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China

3. Henan Dabieshan National Field Observation & Research Station of Forest Ecosystem, Zhengzhou 450046, China

4. Xinyang Academy of Ecological Research, Xinyang 464000, China

5. Jigongshan National Nature Reserve, Xinyang 464039, China

Abstract

Significant influences on tree growth and forest functionality are attributed to nitrogen (N) addition. However, limited research has been conducted on the effects of N addition on forest spatial structure. In this study, we examined the effects of different N addition methods and concentrations on the stand spatial structure of a deciduous broad-leaved forest over the period 2012 to 2017. Five N addition treatments were implemented: CK (control group without N addition), CN25 (low N concentration added to the canopy), CN50 (high N concentration added to the canopy), UN25 (low N concentration added to the understory), and UN50 (high N concentration added to the understory). The results showed a moderate influence of N addition (CN25, CN50, UN25, UN50) on optimizing the stand spatial structure. CN25, CN50, and UN25 increased the mean values of the mingling degree (M) and neighborhood comparison (U), while decreasing the mean value of the uniform angle index (W), although these effects were not significant. Enhancements in the average value of the crowding degree (C) and comprehensive spatial structure index (CSSI) between 2012 and 2017 were found in all five treatments, demonstrating statistical significance. Assessing the distribution of the stand spatial structure index, CN25, CN50, and UN25 increased the proportion of M at an intensity (M = 0.75) and extreme intensity (M = 1), while decreasing the proportion at zero intensity (M = 0), weak intensity (M = 0.25), and moderate intensity (M = 0.5). A decrease in the proportion of trees was noted when U = 0 (excluding UN50), with no discernible pattern found in the frequency distribution of other values. CN50 and UN25 increased the proportion of W at a moderate level (W = 0.5), while CN25 and UN50 reduced it. No clear pattern was detected in the frequency distributions of other values. All five treatments increased the proportion of C at the maximum level (C = 1), while decreasing the proportions at levels of 0, 0.25, and 0.5 in 2017. Intriguingly, nitrogen addition treatments appeared to optimize the stand spatial structure to some extent and stimulated the growth of trees with larger diameters. Nevertheless, the short duration of the data collection period, spanning only five years, may have influenced the significance of the outcomes, underlining the requirement for extended studies. Conclusively, N deposition adjusted and enhanced the stand spatial structure to various degrees within the research region, providing valuable insights for further optimization of forest management.

Funder

Key scientific research projects in universities of Henan

Xinyang Academy of Ecological Research Open Foundation

General Project of Natural Science Foundation of Henan Province

National Natural Science Foundations of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3