Analysis of Carrier Transport at Zn1−xSnxOy/Absorber Interface in Sb2(S,Se)3 Solar Cells

Author:

Lin Junhui1,Xu Zhijie1,Guo Yingying1,Chen Chong1,Zhao Xiaofang1,Chen Xuefang2,Hu Juguang3,Liang Guangxing3ORCID

Affiliation:

1. International School of Microelectronics, Dongguan University of Technology, Dongguan 523000, China

2. School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523000, China

3. Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

This work explores the effect of a Zn1−xSnxOy (ZTO) layer as a potential replacement for CdS in Sb2(S,Se)3 devices. Through the use of Afors-het software v2.5, it was determined that the ZTO/Sb2(S,Se)3 interface exhibits a lower conduction band offset (CBO) value of 0.34 eV compared to the CdS/Sb2(S,Se)3 interface. Lower photo-generated carrier recombination can be obtained at the interface of the ZTO/Sb2(S,Se)3 heterojunction. In addition, the valence band offset (VBO) value at the ZTO/Sb2(S,Se)3 interface increases to 1.55 eV. The ZTO layer increases the efficiency of the device from 7.56% to 11.45%. To further investigate the beneficial effect of the ZTO layer on the efficiency of the device, this goal has been achieved by five methods: changing the S content of the absorber, changing the thickness of the absorber, changing the carrier concentration of ZTO, using various Sn/(Zn+Sn) ratios in ZTO, and altering the thickness of the ZTO layer. When the S content in Sb2(S,Se)3 is around 60% and the carrier concentration is about 1018 cm−3, the efficiency is optimal. The optimal thickness of the Sb2(S,Se)3 absorber layer is 260 nm. A ZTO/Sb2(S,Se)3 interface with a Sn/(Zn+Sn) ratio of 0.18 exhibits a better CBO value. It is also found that a ZTO thickness of 20 nm is needed for the best efficiency.

Funder

Science and Technology Plan Project of Shenzhen

Songshan Lake Science and Technology Correspondent Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3