Score Images as a Modality: Enhancing Symbolic Music Understanding through Large-Scale Multimodal Pre-Training

Author:

Qin Yang1ORCID,Xie Huiming2,Ding Shuxue1,Li Yujie1,Tan Benying1ORCID,Ye Mingchuan3

Affiliation:

1. School of Artificial Intelligence, Guangxi Colleges and Universities Key Laboratory of AI Algorithm Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. Engineering Comprehensive Training Center, Guilin University of Aerospace Technology, Guilin 541004, China

3. Cloud Computing & Big Data Center, Gongcheng Management Consulting Co., Ltd., Guangzhou 510630, China

Abstract

Symbolic music understanding is a critical challenge in artificial intelligence. While traditional symbolic music representations like MIDI capture essential musical elements, they often lack the nuanced expression in music scores. Leveraging the advancements in multimodal pre-training, particularly in visual-language pre-training, we propose a groundbreaking approach: the Score Images as a Modality (SIM) model. This model integrates music score images alongside MIDI data for enhanced symbolic music understanding. We also introduce novel pre-training tasks, including masked bar-attribute modeling and score-MIDI matching. These tasks enable the SIM model to capture music structures and align visual and symbolic representations effectively. Additionally, we present a meticulously curated dataset of matched score images and MIDI representations optimized for training the SIM model. Through experimental validation, we demonstrate the efficacy of our approach in advancing symbolic music understanding.

Funder

National Natural Science Foundation of China

the Guangxi Science and Technology Major Project

Publisher

MDPI AG

Reference38 articles.

1. Toward Intelligent Music Information Retrieval;Li;IEEE Trans. Multimed.,2006

2. Huang, C.Z.A., Vaswani, A., Uszkoreit, J., Simon, I., Hawthorne, C., Shazeer, N., Dai, A.M., Hoffman, M.D., Dinculescu, M., and Eck, D. (May, January 30). Music Transformer: Generating Music with Long-Term Structure. Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada.

3. Bar Transformer: A Hierarchical Model for Learning Long-Term Structure and Generating Impressive Pop Music;Qin;Appl. Intell.,2023

4. This Time with Feeling: Learning Expressive Musical Performance;Oore;Neural Comput. Appl.,2020

5. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017, January 4–9). Attention Is All You Need. Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3