Active Vibration Control Using Loudspeaker-Based Inertial Actuator with Integrated Piezoelectric Sensor

Author:

Chen Minghao1,Mao Qibo1ORCID,Peng Lihua1,Li Qi1

Affiliation:

1. School of Aircraft Engineering, Nanchang HangKong University, 696 South Fenghe Avenue, Nanchang 330063, China

Abstract

With the evolution of the aerospace industry, structures have become larger and more complex. These structures exhibit significant characteristics such as extensive flexibility, low natural frequencies, numerous modes, and minimal structural damping. Without implementing vibration control measures, the risk of premature structural fatigue failure becomes imminent. In present times, the installation of inertial actuators and control signal acquisition units typically requires independent setups, which can be cumbersome for practical engineering purposes. To address this issue, this study introduces a novel approach: an independent control unit combining a loudspeaker-based inertial actuator (LBIA) with an integrated piezoelectric ceramic sensor. This unit enables autonomous vibration control, offering the advantages of ease of use, low cost, and lightweight construction. Experimental verification was performed to assess the mechanical properties of the LBIA. Additionally, a mathematical model for the LBIA with an integrated piezoelectric ceramic sensor was developed, and its efficacy as a control unit for thin plate structure vibration control was experimentally validated, showing close agreement with numerical results. Furthermore, the LBIA’s benefits as an actuator for low-frequency mode control were verified through experiments using external sensors. To further enhance control effectiveness, a mathematical model of the strain differential feedback controller based on multi-bandpass filtering velocity improvement was established and validated through experiments on the clamp–clamp thin plate structure. The experimental results demonstrate that the designed LBIA effectively reduces vibration in low-frequency bands, achieving vibration energy suppression of up to 12.3 dB and 23.6 dB for the first and second modes, respectively. Moreover, the LBIA completely suppresses the vibration of the fourth mode. Additionally, the improved control algorithm, employing bandpass filtering, enhances the effectiveness of the LBIA-integrated sensor, enabling accurate multimodal damping control of the structure’s vibrations for specified modes.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Graduate Innovative Special Fund Projects of Jiangxi Province

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibration control by using active electromagnetic shunt damper;Smart Materials and Structures;2024-05-07

2. Active Vibration Control of a Plate Using Piezoelectric Sensors and Loudspeakers;Lecture Notes in Mechanical Engineering;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3