Autonomous Sensor System for Low-Capacity Wind Turbine Blade Vibration Measurement

Author:

Muxica Diego1ORCID,Rivera Sebastian23ORCID,Orchard Marcos E.4ORCID,Ahumada Constanza4ORCID,Jaramillo Francisco4ORCID,Bravo Felipe1,Gutiérrez José M.1ORCID,Astroza Rodrigo1ORCID

Affiliation:

1. Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago 7620001, Chile

2. DCE&S Group, Department of Electrical Sustainable Energy, Delft University of Technology, 2628 CD Delft, The Netherlands

3. Department of Electrical Engineering, Centro de Energía, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile

4. Department of Electrical Engineering, Faculty of Physical and Mathematical Sciences, University of Chile, Av. Tupper 2007, Santiago 8370451, Chile

Abstract

This paper presents the design, implementation, and validation of an on-blade sensor system for remote vibration measurement for low-capacity wind turbines. The autonomous sensor system was deployed on three wind turbines, with one of them operating in harsh weather conditions in the far south of Chile. The system recorded the acceleration response of the blades in the flapwise and edgewise directions, data that could be used for extracting the dynamic characteristics of the blades, information useful for damage diagnosis and prognosis. The proposed sensor system demonstrated reliable data acquisition and transmission from wind turbines in remote locations, proving the ability to create a fully autonomous system capable of recording data for monitoring and evaluating the state of health of wind turbine blades for extended periods without human intervention. The data collected by the sensor system presented in this study can serve as a foundation for developing vibration-based strategies for real-time structural health monitoring.

Funder

Chilean National Agency for Research and Development

Publisher

MDPI AG

Reference32 articles.

1. Renewable Energy Policy Network for the 21st Century (REN21) (2022, December 20). Renewables Global Status Report 2022. Available online: https://www.ren21.net/reports/global-status-report/.

2. Wind Energy Systems;Blaabjerg;Proc. IEEE,2017

3. Power Electronics Technology for Large-Scale Renewable Energy Generation;Blaabjerg;Proc. IEEE,2023

4. Wind turbine reliability data review and impacts on levelised cost of energy;Dao;Wind Energy,2019

5. A Bayesian approach for fatigue damage diagnosis and prognosis of wind turbine blades;Jaramillo;Mech. Syst. Signal Process.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3