Decoding the Effect of Synthesis Factors on Morphology of Nanomaterials: A Case Study to Identify and Optimize Experimental Conditions for Silver Nanowires

Author:

Najjari Aryan1,Namisnak Mary1,McCormick Massimo1,Du Dongping2ORCID,Du Yuncheng13ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA

2. Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA

3. Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA

Abstract

Silver nanowires (AgNWs) are one kind of nanomaterials for various applications such as solar panel cells and biosensors. However, the morphology of AgNWs, particularly their length and diameter, plays a critical role in determining the efficiency of energy storage systems and the transmittance of biosensors. Thus, it is imperative to study synthesis strategy for morphology control. This study focuses on synthesizing AgNWs through the solvothermal approach and aims to understand the individual and combined effects of three nucleants, NaCl, Fe(NO3)3 and NaBr, on the morphology of AgNWs. Using a modified successive multistep growth (SMG) approach and fine-tuning the nucleant concentrations, this study synthesized AgNWs with controllable aspect ratios, while minimizing the presence of undesirable byproducts like nanoparticles. Our results demonstrated the successful synthesis of AgNWs with favorable morphologies, including lengths of approximately 180 µm and diameters of 40 nm, thus resulting in aspect ratios of 4500. In addition, to assess the quality of the synthesized AgNWs, this work developed computational tools that uses MATLAB to automate the analysis of scanning electron microscope (SEM) images for detecting silver nanoparticles. This automated approach provides a quantitative analysis tool for material characterization and holds the promise for long-term evaluation of diverse AgNW samples, thereby paving the way for advancements in their synthesis and application. Overall, this study demonstrates the significance of morphology control in AgNW synthesis and presents a robust framework for material characterization and quality analysis.

Funder

National Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3