Using Direct Current Potential Drop Technique to Estimate Fatigue Crack Growth Rates in Solid Bar Specimens under Environmental Assisted Fatigue in Simulated Pressurized Water Reactor Conditions

Author:

Arrieta Sergio,Perosanz Francisco Javier,Barcala Jose Miguel,Ruiz Maria Luisa,Cicero SergioORCID

Abstract

The direct current potential drop (DCPD) technique may be used in crack propagation tests to measure the crack growth rate (CGR). Potential probes attached to the specimen allow the variation of the crack length to be estimated. In this research, the DCPD technique using one single potential probe was applied to solid bar specimens (i.e., without any initial notch or crack) subjected to low-cycle fatigue testing in a simulated pressurized water reactor (PWR) environment. This particular analysis had two associated difficulties, the first one being the fact that crack initiation sites are not known beforehand, and the second one consisting in the experimental difficulties and conditioning factors associated with the simulation of the PWR environment. Nine solid bar specimens were tested to fatigue failure under different strain amplitudes and frequencies, while also measuring the corresponding DCPD signal during the fatigue process. It was observed that the initiation of multiple cracks was detected by the DCPD measurements. Moreover, as fatigue continued, one of the cracks became dominant and progressed to cause the specimen failure. The DCPD technique allowed the average CGR of the dominant crack to be estimated. Finally, the obtained average CGRs were validated by comparing them with average CGRs derived from striation spacing measurements, obtained from scanning electron microscopy (SEM) and from literature values gathered in the NUREG/CR-6909 document.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3