Molecular Approaches and Echocardiographic Deformation Imaging in Detecting Myocardial Fibrosis

Author:

Sonaglioni Andrea,Nicolosi Gian LuigiORCID,Rigamonti Elisabetta,Lombardo Michele,La Sala LuciaORCID

Abstract

The pathological remodeling of myocardial tissue is the main cause of heart diseases. Several processes are involved in the onset of heart failure, and the comprehension of the mechanisms underlying the pathological phenotype deserves special attention to find novel procedures to identify the site of injury and develop novel strategies, as well as molecular druggable pathways, to counteract the high degree of morbidity associated with it. Myocardial fibrosis (MF) is recognized as a critical trigger for disruption of heart functionality due to the excessive accumulation of extracellular matrix proteins, in response to an injury. Its diagnosis remains focalized on invasive techniques, such as endomyocardial biopsy (EMB), or may be noninvasively detected by cardiac magnetic resonance imaging (CMRI). The detection of MF by non-canonical markers remains a challenge in clinical practice. During the last two decades, two-dimensional (2D) speckle tracking echocardiography (STE) has emerged as a new non-invasive imaging modality, able to detect myocardial tissue abnormalities without specifying the causes of the underlying histopathological changes. In this review, we highlighted the clinical utility of 2D-STE deformation imaging for tissue characterization, and its main technical limitations and criticisms. Moreover, we focalized on the importance of coupling 2D-STE examination with the molecular approaches in the clinical decision-making processes, in particular when the 2D-STE does not reflect myocardial dysfunction directly. We also attempted to examine the roles of epigenetic markers of MF and hypothesized microRNA-based mechanisms aiming to understand how they match with the clinical utility of echocardiographic deformation imaging for tissue characterization and MF assessment.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3