Magnetic Resonance-Based Synthetic Computed Tomography Using Generative Adversarial Networks for Intracranial Tumor Radiotherapy Treatment Planning

Author:

Wang Chun-Chieh,Wu Pei-Huan,Lin GiginORCID,Huang Yen-Ling,Lin Yu-ChunORCID,Chang Yi-Peng (Eve),Weng Jun-ChengORCID

Abstract

The purpose of this work is to develop a reliable deep-learning-based method that is capable of synthesizing needed CT from MRI for radiotherapy treatment planning. Simultaneously, we try to enhance the resolution of synthetic CT. We adopted pix2pix with a 3D framework, which is a conditional generative adversarial network, to map the MRI data domain into the CT data domain of our dataset. The original dataset contains paired MRI and CT images of 31 subjects; 26 pairs were used for model training and 5 were used for model validation. To identify the correctness of the synthetic CT of models, all of the synthetic CTs were calculated by the quantized image similarity formulas: cosine angle distance, Euclidean distance, mean square error, peak signal-to-noise ratio, and mean structural similarity. Two radiologists independently evaluated the satisfaction score, including spatial, detail, contrast, noise, and artifacts, for each imaging attribute. The mean (±standard deviation) of the structural similarity indices (CAD, L2 norm, MSE, PSNR, and MSSIM) between five real CT scans and the synthetic CT scans were 0.96 ± 0.015, 76.83 ± 12.06, 0.00118 ± 0.00037, 29.47 ± 1.35, and 0.84 ± 0.036, respectively. For synthetic CT, radiologists rated the results as evincing excellent satisfaction in spatial geometry and noise level, good satisfaction in contrast and artifacts, and fair imaging details. The similarity index and clinical evaluation results between synthetic CT and original CT guarantee the usability of the proposed method.

Funder

Ministry of Science and Technology

Chang Gung University

Chang Gung Memorial Hospital at Linkou

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3