Microsurgical Transplantation of Pedicled Muscles in an Isolation Chamber—A Novel Approach to Engineering Muscle Constructs via Perfusion-Decellularization

Author:

Cai AijiaORCID,Zheng Zengming,Müller-Seubert Wibke,Biggemann Jonas,Fey TobiasORCID,Beier Justus P.ORCID,Horch Raymund E.ORCID,Frieß Benjamin,Arkudas AndreasORCID

Abstract

Decellularized whole muscle constructs represent an ideal scaffold for muscle tissue engineering means as they retain the network and proteins of the extracellular matrix of skeletal muscle tissue. The presence of a vascular pedicle enables a more efficient perfusion-based decellularization protocol and allows for subsequent recellularization and transplantation of the muscle construct in vivo. The goal of this study was to create a baseline for transplantation of decellularized whole muscle constructs by establishing an animal model for investigating a complete native muscle isolated on its pedicle in terms of vascularization and functionality. The left medial gastrocnemius muscles of 5 male Lewis rats were prepared and raised from their beds for in situ muscle stimulation. The stimulation protocol included twitches, tetanic stimulation, fatigue testing, and stretching of the muscles. Peak force, maximum rate of contraction and relaxation, time to maximum contraction and relaxation, and maximum contraction and relaxation rate were determined. Afterwards, muscles were explanted and transplanted heterotopically in syngeneic rats in an isolation chamber by microvascular anastomosis. After 2 weeks, transplanted gastrocnemius muscles were exposed and stimulated again followed by intravascular perfusion with a contrast agent for µCT analysis. Muscle constructs were then paraffin embedded for immunohistological staining. Peak twitch and tetanic force values all decreased significantly after muscle transplantation while fatigue index and passive stretch properties did not differ between the two groups. Vascular analysis revealed retained perfused vessels most of which were in a smaller radius range of up to 20 µm and 45 µm. In this study, a novel rat model of heterotopic microvascular muscle transplantation in an isolation chamber was established. With the assessment of in situ muscle contraction properties as well as vessel distribution after 2 weeks of transplantation, this model serves as a base for future studies including the transplantation of perfusion-decellularized muscle constructs.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3