Advances in the Parameter Space Concept towards Picometer Precise Crystal Structure Refinement—A Resolution Study

Author:

Zschornak Matthias12,Wagner Christian1,Nentwich Melanie3ORCID,Vallinayagam Muthu12ORCID,Fischer Karl F.4

Affiliation:

1. Center for Efficient High Temperature Processes and Materials Conversion ZeHS, Freiberg University of Mining and Technology, Winklerstr. 5, D-09596 Freiberg, Germany

2. Faculty of Physics, University of Applied Sciences, Friedrich-List-Platz 1, D-01069 Dresden, Germany

3. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany

4. Institute of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany

Abstract

The Parameter Space Concept (PSC) is an alternative approach to solving and refining (partial) crystal structures from very few pre-chosen X-ray or neutron diffraction amplitudes without the use of Fourier inversion. PSC interprets those amplitudes as piecewise analytic hyper-surfaces, so-called isosurfaces, in the Parameter Space, which is spanned by the spatial coordinates of all atoms of interest. The intersections of all isosurfaces constitute the (possibly degenerate) structure solution. The present feasibility study investigates the La and Sr split position of the potential high-temperature super-conductor (La0.5Sr1.5)MnO4, I4/mmm, with a postulated total displacement between La and Sr of a few pm by theoretical amplitudes of pre-selected 00l reflections (l=2,4,…,20). The revision of 15-year-old results with state-of-the-art computing equipment enhances the former simplified model by varying the scattering power ratio fLa/fSr, as exploitable by means of resonant scattering contrast at synchrotron facilities, and irrevocably reveals one of the two originally proposed solutions as being a “blurred” pseudo-solution. Finally, studying the resolution limits of PSC as a function of intensity errors by means of Monte-Carlo simulations shows both that the split can only be resolved for sufficiently low errors and, particularly for the resonant scattering contrast, a theoretical precision down to ±0.19 pm can be achieved for this specific structural problem.

Funder

DFG

Federal Ministry of Education and Research and the State of Saxony

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Reference31 articles.

1. Structure determination without Fourier inversion. Part I. Unique results for centrosymmetric examples;Fischer;Z. Kristallogr.,2005

2. Structure determination without Fourier inversion. Part VI: High resolution direct space structure information from one-dimensional data obtained with two wavelengths;Kirfel;Z. Kristallogr.,2010

3. Structure determination without Fourier inversion. Part V. A Concept based on parameter space;Zimmermann;Acta Crystallogr.,2009

4. Pilz, K. (1996). Weiterentwicklung und Anwendung einer Algebraischen Methode zur Teilstrukturbestimmung, ein Beitrag zur Eindeutigkeit von Strukturanalysen. [Ph.D. Thesis, Universität des Saarlandes].

5. Hard X-ray probe to study doping-dependent electron redistribution and strong covalency in La1−xSr1+xMnO4;Mirone;Phys. Rev. B,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3