Mechanical Properties of Ti Grade 2 Manufactured Using Laser Beam Powder Bed Fusion (PBF-LB) with Checkerboard Laser Scanning and In Situ Oxygen Strengthening

Author:

Wysocki Bartlomiej Adam1ORCID,Chmielewska-Wysocka Agnieszka12,Maj Piotr3ORCID,Molak Rafał Maksymilian3ORCID,Romelczyk-Baishya Barbara3ORCID,Żrodowski Łukasz34ORCID,Ziętala Michał1,Nowak Wojciech1,Święszkowski Wojciech3,Muzyk Marek1ORCID

Affiliation:

1. Multidisciplinary Research Center, Cardinal Stefan Wyszynski University in Warsaw, 05-092 Dziekanow Lesny, Poland

2. International Additive Manufacturing Group Ltd., 05-800 Pruszkow, Poland

3. Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland

4. Amazemet Sp. z o. o., Ltd., Al. Jana Pawła II 27, 00-867 Warsaw, Poland

Abstract

Additive manufacturing (AM) technologies have advanced from rapid prototyping to becoming viable manufacturing solutions, offering users both design flexibility and mechanical properties that meet ISO/ASTM standards. Powder bed fusion using a laser beam (PBF-LB), a popular additive manufacturing process (aka 3D printing), is used for the cost-effective production of high-quality products for the medical, aviation, and automotive industries. Despite the growing variety of metallic powder materials available for the PBF-LB process, there is still a need for new materials and procedures to optimize the processing parameters before implementing them into the production stage. In this study, we explored the use of a checkerboard scanning strategy to create samples of various sizes (ranging from 130 mm3 to 8000 mm3 using parameters developed for a small 125 mm3 piece). During the PBF-LB process, all samples were fabricated using Ti grade 2 and were in situ alloyed with a precisely controlled amount of oxygen (0.1–0.4% vol.) to enhance their mechanical properties using a solid solution strengthening mechanism. The samples were fabricated in three sets: I. Different sizes and orientations, II. Different scanning strategies, and III. Rods for high-cycle fatigue (HCF). For the tensile tests, micro samples were cut using WEDM, while for the HCF tests, samples were machined to eliminate the influence of surface roughness on their mechanical performance. The amount of oxygen in the fabricated samples was at least 50% higher than in raw Ti grade 2 powder. The O2-enriched Ti produced in the PBF-LB process exhibited a tensile strength ranging from 399 ± 25 MPa to 752 ± 14 MPa, with outcomes varying based on the size of the object and the laser scanning strategy employed. The fatigue strength of PBF-LB fabricated Ti was 386 MPa, whereas the reference Ti grade 2 rod samples exhibited a fatigue strength of 312 MPa. Our study revealed that PBF-LB parameters optimized for small samples could be adapted to fabricate larger samples using checkerboard (“island”) scanning strategies. However, some additional process parameter changes are needed to reduce porosity.

Funder

NCN

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3