Experimental Study: The Effect of Pore Shape, Geometrical Heterogeneity, and Flow Rate on the Repetitive Two-Phase Fluid Transport in Microfluidic Porous Media

Author:

Kim Seunghee1ORCID,Zhang Jingtao2,Ryu Sangjin3ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

2. Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

3. Department of Mechanical and Materials Engineering, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract

Geologic subsurface energy storage, such as porous-media compressed-air energy storage (PM-CAES) and underground hydrogen storage (UHS), involves the multi-phase fluid transport in structurally disordered or heterogeneous porous media (e.g., soils and rocks). Furthermore, such multi-phase fluid transport is likely to repeatedly occur due to successive fluid injections and extractions, thus, resulting in cyclic drainage–imbibition processes. To complement our preceding study, we conducted a follow-up study with microfluidic pore-network devices with a square solid shape (Type II) to further advance our understanding on the effect of the pore shape (aspect ratio, Type I: 5–6 > Type II: ~1), pore-space heterogeneity (coefficient of variation, COV = 0, 0.25, and 0.5), and flow rates (Q = 0.01 and 0.1 mL/min) on the repetitive two-phase fluid flow in general porous media. The influence of pore shape and pore-space heterogeneity were observed to be more prominent when the flow rate was low (e.g., Q = 0.01 mL/min in this study) on the examined outcomes, including the drainage and imbibition patterns, the similarity of those patterns between repeated steps, the sweep efficiency and residual saturation of the nonwetting fluid, and fluid pressure. On the other hand, a higher flow rate (e.g., Q = 0.1 mL/min in this study) appeared to outweigh those factors for the Type II structure, owing to the low aspect ratio (~1). It was also suggested that the flow morphology, sweep efficiency, residual saturation, and required pressure gradient may not severely fluctuate during the repeated drainage-–imbibition processes; instead, becoming stabilized after 4–5 cycles, regardless of the aspect ratio, COV, and Q. Implications of the study results for PM-CAES and UHS are discussed as a complementary analysis at the end of this manuscript.

Funder

University of Nebraska-Lincoln

American Chemical Society Petroleum Research Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3